SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Jin ML, Shepherd JM, Peters-Lidard C. Nat. Hazards 2007; 43(2): 257-271.

Copyright

(Copyright © 2007, Holtzbrinck Springer Nature Publishing Group)

DOI

unavailable

PMID

unavailable

Abstract

Urban surface temperature is hazardously higher than surrounding regions (so-called urban heat island effect UHI). Accurately simulating urbanization-induced temperature hazard is critical for realistically representing urban regions in the land surface-atmosphere climate system. However, inclusion of urban landscapes in regional or global climate models has been overlooked due to the coarse spatial resolution of these models as well as the lack of observations for urban physical properties. Recently, National Aeronautics and Space Administration (NASA) Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS) observations illustrate important urban physical properties, including skin temperature, surface albedo, surface emissivity, and leaf area index, It is possible to identify the unique urban features globally and thus simulate global urban processes. An urban scheme is designed to represent the urban-modified physical parameters (albedo, emissivity, land cover, roughness length, thermal and hydraulic properties) and to include new, unique physical processes that exist in urban regions. The urban scheme is coupled with National Center for Atmospheric Research (NCAR) Community Land Model Version 2 (CLM2) and single column coupled NCAR Community Atmosphere Model CAM2/CLM2 to assess the mechanisms responsible for UHI. There are two-steps in our model development. First, satellite observations of albedo, emissivity, LAI, and in situ observed thermal properties are updated in CLM2 to represent the first-order urban effects. Second, new terms representing the urban anthropogenic heat flux, storage heat flux, and roughness length are calculated in the model. Model simulations suggest that human activity-induced surface temperature hazard results in overlying atmosphere instability and convective rainfall, which may enhance the possibility of urban flood hazard.

Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print