SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Liang Y, Zhang J, Walczak P, Bulte JWM. J. Neurosci. Methods 2018; 308: 142-150.

Affiliation

Russell H. Morgan Dept. of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Dept. of Chemical & Biomolecular Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Dept. of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Dept of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. Electronic address: jwmbulte@mri.jhu.edu.

Copyright

(Copyright © 2018, Elsevier Publishing)

DOI

10.1016/j.jneumeth.2018.07.014

PMID

30056087

Abstract

BACKGROUND: Intrasciatic nerve injection of the Ricinus communis agglutinin (RCA or ricin) causes degeneration of motor neurons (MNs) with functional deficits, such as those that occur in amyotrophic lateral sclerosis (ALS). The objective of this study was to develop a new comprehensive platform for quantitative evaluation of MN loss, muscular atrophy and behavioral deficits using different ricin injection regimens. NEW METHOD: Fluorogold (FG)-guided stereological quantification of MNs, in vivo magnetic resonance imaging (MRI) of muscular atrophy, and CatWalk behavioral testing were used to evaluate the outcome of rats treated with different ricin regimens (RCA60 0.5 µg, RCA60 3 µg, and RCA120 6 µg) as animal models of MN degeneration.

RESULTS: FG-guided stereological counting of MNs enabled identification, dissection and robust quantification of ricin-induced MN loss. The RCA60 0.5 µg and RCA120 6 µg regimens were found to be best suited as preclinical MN depletion models, with a low mortality and a reproducible MN loss, accompanied by muscle atrophy and functional deficits evaluated by MRI and the CatWalk method, respectively. COMPARISON WITH EXISTING METHODS: 1) Fluorogold neuronal tracing provides a robust and straightforward means for quantifying MN loss in the spinal cord; 2) MRI is well-suited to non-invasively assess muscle atrophy; and 3) The CatWalk method is more flexible than rotarod test for studying motor deficits.

CONCLUSION: Intrasciatic injection of RCA60 or RCA120 induces nerve injury and muscle atrophy, which can be properly evaluated by a comprehensive platform using FG-guided quantitative 3D topographic histological analysis, MRI and the CatWalk behavioral test.

Copyright © 2018. Published by Elsevier B.V.


Language: en

Keywords

magnetic resonance imaging; motor neuron; muscle atrophy; neuronal tracing; ricin; sciatic nerve

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print