SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Eichenberger GC, Ribeiro SJ, Osaki MY, Maruoka RY, Resende GC, Castellan-Baldan L, Corrêa SAL, Da Silva LA, Coimbra NC. Neuropharmacology 2002; 42(1): 48-59.

Affiliation

Faculdade de Medicina de Ribeirão Preto, Departamento de Farmacologia, Universidade de São Paulo, Lab. de Neuroanatomia e Neuropsicobiologia, Avenida dos Bandeirantes 3900, 14049-900, Ribeirão Preto, Brazil.

Copyright

(Copyright © 2002, Elsevier Publishing)

DOI

unavailable

PMID

11750915

Abstract

The effects of central administration of opioid antagonists on the aversive responses elicited by electrical (at the freezing and escape thresholds) or chemical stimulation (crossings, rearings, turnings and jumps, induced by microinjections of bicuculline) of the midbrain tectum were determined. Central microinjections of naloxone and naltrexone in the mesencephalic tectum caused a significant increase in the freezing and escape thresholds elicited by electrical midbrain tectum stimulation. Furthermore, both opioid antagonists caused a significant decrease in the mean incidence of aversive behavioral responses induced by microinjections of bicuculline in the deep layers of the superior colliculus (DLSC) and in dorsal aspects of the periaqueductal gray matter (DPAG), as compared with controls. These findings suggest an opioid modulation of the GABAergic inhibitory inputs controlling the aversive behavior elicited by midbrain tectum stimulation. In fact, immunohistochemical evidence suggests that the dorsal mesencephalon is rich in beta-endorphin-containing neurons and fibers with varicosities. Iontophoretical microinjections of the neurotracer biodextran in the substantia nigra, pars reticulata (SNpr), show nigro-tectal pathways connecting SNpr with the same neural substrate of the DPAG rich in neuronal cells immunoreactive for opioid peptides. Labeled neurons of the DLSC and periaqueductal gray matter send inputs with varsicosities to ipsi- and contralateral DPAG and ipsilateral SNpr. These findings, in addition to the psychopharmacological evidence for the interaction between opioid and GABAergic mechanisms, offer a neuroanatomical basis of a possible presynaptic opioid inhibition of GABAergic nigro-tectal neurons modulating the fear in aversive structures of the cranial mesencephalon, in a short link, and maybe through a major neural circuit, also in GABA-containing perikarya of nigro-tectal neurons.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print