SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Schoell SL, Weaver AA, Urban JE, Jones DA, Stitzel JD, Hwang E, Reed MP, Rupp JD. Stapp Car Crash J. 2015; 59: 359-383.

Affiliation

University of Michigan Transportation Research Institute.

Copyright

(Copyright © 2015, Society of Automotive Engineers SAE)

DOI

unavailable

PMID

26660751

Abstract

The aging population is a growing concern as the increased fragility and frailty of the elderly results in an elevated incidence of injury as well as an increased risk of mortality and morbidity. To assess elderly injury risk, age-specific computational models can be developed to directly calculate biomechanical metrics for injury. The first objective was to develop an older occupant Global Human Body Models Consortium (GHBMC) average male model (M50) representative of a 65 year old (YO) and to perform regional validation tests to investigate predicted fractures and injury severity with age. Development of the GHBMC M50 65 YO model involved implementing geometric, cortical thickness, and material property changes with age. Regional validation tests included a chest impact, a lateral impact, a shoulder impact, a thoracoabdominal impact, an abdominal bar impact, a pelvic impact, and a lateral sled test. The second objective was to investigate age-related injury risks by performing a frontal US NCAP simulation test with the GHBMC M50 65 YO and the GHBMC M50 v4.2 models. Simulation results were compared to the GHBMC M50 v4.2 to evaluate the effect of age on occupant response and risk for head injury, neck injury, thoracic injury, and lower extremity injury. Overall, the GHBMC M50 65 YO model predicted higher probabilities of AIS 3+ injury for the head and thorax.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print