SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Asimakopoulou EK, Kolaitis DI, Founti MA. Fire Technol. 2017; 53(2): 709-739.

Copyright

(Copyright © 2017, Holtzbrinck Springer Nature Publishing Group)

DOI

10.1007/s10694-016-0594-2

PMID

unavailable

Abstract

Externally venting flames (EVF) may emerge through openings in fully developed under-ventilated compartment fires, significantly increasing the risk of fire spreading to higher floors or adjacent buildings. Several fire engineering correlations have been developed, aiming to describe the main characteristics of EVF that affect the fire safety design aspects of a building, such as EVF geometry, EVF centreline temperature and EVF-induced heat flux to the façade elements. This work is motivated by recent literature reports suggesting that existing correlations, proposed in fire safety design guidelines (e.g. Eurocodes), cannot describe with sufficient accuracy the characteristics of EVF under realistic fire conditions. In this context, a wide range of EVF correlations are comparatively assessed and evaluated. Quantification of their predictive capabilities is achieved by means of comparison with measurements obtained in 30 different large-scale compartment-façade fire experiments, covering a broad range of heat release rates (2.8 MW to 10.3 MW), ventilation factor values (2.6 m5/2 to 11.53 m5/2) and ventilation conditions (no forced draught, forced draught). A detailed analysis of the obtained results and the respective errors corroborates the fact that many correlations significantly under-predict critical physical parameters, thus resulting in reduced (non-conservative) fire safety levels. The effect of commonly used assumptions (e.g. EVF envelope shape or model parameters for convective and radiative heat transfer calculations) on the accuracy of the predicted values is determined, aiming to highlight the potential to improve the fire engineering design correlations currently available.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print