SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Hidalgo JP, Torero JL, Welch S. Fire Technol. 2017; 53(3): 1201-1232.

Copyright

(Copyright © 2017, Holtzbrinck Springer Nature Publishing Group)

DOI

10.1007/s10694-016-0625-z

PMID

unavailable

Abstract

A novel performance-based methodology for the quantitative fire safe design of building assemblies including insulation materials has recently been proposed. This approach is based on the definition of suitable thermal barriers in order to control the fire hazards imposed by the insulation. Under this framework, the concept of "critical temperature" has been used to define an initiating failure criterion for the insulation, so as to ensure there will be no significant contribution to the fire nor generation of hazardous gas effluents. This paper proposes a methodology to evaluate this "critical temperature" using as examples some of the most common insulation materials used for buildings in the EU market, i.e. rigid polyisocyanurate foam, rigid phenolic foam, rigid expanded polystyrene foam and low density flexible stone wool. A characterisation of these materials, based on a series of ad-hoc Cone Calorimeter and thermo-gravimetric experiments, serves to establish the rationale behind the quantification of the critical temperature. The temperature of the main peak of pyrolysis, obtained from differential thermo-gravimetric analysis under a nitrogen atmosphere at low heating rates, is proposed as the "critical temperature" for materials that do not significantly shrink and melt, i.e. charring insulation materials. For materials with shrinking and melting behaviour it is suggested that the melting point could be used as "critical temperature". Conservative values of "critical temperature" proposed are 300°C for polyisocyanurate, 425°C for phenolic foam and 240°C for expanded polystyrene. The concept of a "critical temperature" for the low density stone wool is examined in the same manner and found to be non-applicable due to the inability to promote a flammable mixture. Additionally, thermal inertia values required for the performance-based methodology are obtained for PIR and PF using a novel approach, providing thermal inertia values within the range 4.5 to 6.5 × 103 W2 s K−2 m−4.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print