SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Bhandari R, Patil S, Singh RK. Transp. Res. C Emerg. Technol. 2012; 21(1): 181-195.

Copyright

(Copyright © 2012, Elsevier Publishing)

DOI

10.1016/j.trc.2011.09.004

PMID

unavailable

Abstract

Anti-lock brake system (ABS) has been designed to achieve maximum deceleration by preventing the wheels from locking. The friction coefficient between tyre and road is a nonlinear function of slip ratio and varies for different road surfaces. In this paper, methods have been developed to predict these different surfaces and accordingly control the wheel slip to achieve maximum friction coefficient for different road surfaces. The surface prediction and control methods are based on a half car model to simulate high speed braking performance. The prediction methods have been compared with the results available in the literature. The results show the advantage of ABS with surface prediction as compared to ABS without proper surface identification. Finally, the performance of the controller developed in this paper has been compared with four different ABS control algorithms reported in the literature. The accuracy of prediction by the proposed methods is very high with error in prediction in a range of 0.17-2.4%. The stopping distance is reduced by more than 3% as a result of prediction for all surfaces.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print