SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Wright AD, Heckman GA, McIlroy WE, Laing AC. Gait Posture 2014; 40(1): 160-165.

Affiliation

Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada. Electronic address: actlaing@uwaterloo.ca.

Copyright

(Copyright © 2014, Elsevier Publishing)

DOI

10.1016/j.gaitpost.2014.03.015

PMID

24726189

Abstract

Novel safety flooring systems are a promising approach for reducing fall-related injuries in seniors, as they have been demonstrated to substantially reduce impact severity during falls, while minimally impairing balance control in community-dwelling older women. This pilot study aimed to characterize the potential effects of flooring conditions on dynamic balance control in retirement home-dwellers with more limited mobility. A tether-release paradigm was used to simulate a trip-type perturbation in 15 seniors across five flooring surfaces (three novel safety floors and one carpet compared to institutional-grade resilient rolled-sheeting). Kinetic and kinematic data tracked the displacement profiles of the underfoot centre-of-pressure and whole-body centre-of-mass, which were used to characterize compensatory balance reactions. Difference tests (ANOVA) found that the onset of the compensatory balance reaction was not associated with floor condition, nor were the timing and magnitude of peak centre-of-pressure excursion (minimum margin of safety) and velocity. Accordingly, the minimum margin of safety of the centre-of-mass was not significantly different across floors. Equivalence tests supported these findings. This study provides evidence that the carpet and novel safety floors tested do not negatively influence characteristics of initial dynamic balance responses following a lean-and-release perturbation compared to an institutional-grade resilient rolled-sheeting surface. In combination with reports of substantial force attenuative properties during fall-related impacts, these findings support the promise of novel safety floors as a biomechanically effective strategy for reducing fall-related injuries.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print