SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Ivarsson J, Viano DC, Lövsund P. J. Biomech. Eng. 2002; 124(4): 422-431.

Affiliation

Department of Machine and Vehicle Systems, Chalmers University of Technology, Göteborg, Sweden. bji@virginia.edu

Copyright

(Copyright © 2002, American Society of Mechanical Engineers)

DOI

unavailable

PMID

12188208

Abstract

Two-dimensional physical models of the human head were used to investigate how the lateral ventricles and irregular skull base influence kinematics in the medial brain during sagittal angular head dynamics. Silicone gel simulated the brain and was separatedfrom the surrounding skull vessel by paraffin that provided a slip interface between the gel and vessel. A humanlike skull base model (HSB) included a surrogate skull base mimicking the irregular geometry of the human. An HSBV model added an elliptical inclusion filled with liquid paraffin simulating the lateral ventricles to the HSB model. A simplified skull base model (SSBV) included ventricle substitute but approximated the anterior and middle cranial fossae by a flat and slightly angled surface. The models were exposed to 7600 rad/s2 peak angular acceleration with 6 ms pulse duration and 5 deg forced rotation. After 90 deg free rotation, the models were decelerated during 30 ms. Rigid body displacement, shear strain and principal strains were determined from high-speed video recorded trajectories of grid markers in the surrogate brains. Peak values of inferior brain surface displacement and strains were up to 10.9X (times) and 3.3X higher in SSBV than in HSBV. Peak strain was up to 2.7X higher in HSB than in HSBV. The results indicate that the irregular skull base protects nerves and vessels passing through the cranial floor by reducing brain displacement and that the intraventricular cerebrospinal fluid relieves strain in regions inferior and superior to the ventricles. The ventricles and irregular skull base are necessary in modeling head impact and understanding brain injury mechanisms.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print